Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Multi-objective optimization model for unmanned aerial vehicles trajectory based on decomposition and trajectory search
Junyan LIU, Feibo JIANG, Yubo PENG, Li DONG
Journal of Computer Applications    2023, 43 (12): 3806-3815.   DOI: 10.11772/j.issn.1001-9081.2022121882
Abstract168)   HTML3)    PDF (1873KB)(129)       Save

The traditional Deep Learning (DL)-based multi-objective solvers have the problems of low model utilization and being easy to fall into the local optimum. Aiming at these problems, a Multi-objective Optimization model for Unmanned aerial vehicles Trajectory based on Decomposition and Trajectory search (DTMO-UT) was proposed. The proposed model consists of the encoding and decoding parts. First, a Device encoder (Dencoder) and a Weight encoder (Wencoder) were contained in the encoding part, which were used to extract the state information of the Internet of Things (IoT) devices and the features of the weight vectors. And the scalar optimization sub-problems that were decomposed from the Multi-objective Optimization Problem (MOP) were represented by the weight vectors. Hence, the MOP was able to be solved by solving all the sub-problems. The Wencoder was able to encode all sub-problems, which improved the utilization of the model. Then, the decoding part containing the Trajectory decoder (Tdecoder) was used to decode the encoding features to generate the Pareto optimal solutions. Finally, to alleviate the phenomenon of greedy strategy falling into the local optimum, the trajectory search technology was added in trajectory decoder, that was generating multiple candidate trajectories and selecting the one with the best scalar value as the Pareto optimal solution. In this way, the exploration ability of the trajectory decoder was enhanced during trajectory planning, and a better-quality Pareto set was found. The results of simulation experiments show that compared with the mainstream DL MOP solvers, under the condition of 98.93% model parameter quantities decreasing, the proposed model reduces the distribution of MOP solutions by 0.076%, improves the ductility of the solutions by 0.014% and increases the overall performance by 1.23%, showing strong ability of practical trajectory planning of DTMO-UT model.

Table and Figures | Reference | Related Articles | Metrics